Metabolic Control of Microvascular Networks: Oxygen Sensing and Beyond

ثبت نشده
چکیده

The metabolic regulation of blood flow is central to guaranteeing an adequate supply of blood to the tissues and microvascular network stability. It is assumed that vascular reactions to local oxygenation match blood supply to tissue demand via negative-feedback regulation. Low oxygen (O 2 ) levels evoke vasodilatation, and thus an increase of blood flow and oxygen supply, by increasing (decreasing) the release of vasodilatory (vasoconstricting) metabolic signal substances with decreasing partial pressure of O 2 . This review analyses the principles of metabolic vascular control with a focus on the prevailing feedback regulations. We propose the following hypotheses with respect to vessel diameter adaptation. (1) In addition to O 2 -dependent signaling, metabolic vascular regulation can be effected by signal substances produced independently of local oxygenation (reflecting the presence of cells) due to the dilution effect. (2) Control of resting vessel tone, and thus perfusion reserve, could be explained by a vascular activity/hypoxia memory. (3) Vasodilator but not vasoconstrictor signaling can prevent shunt perfusion via signal conduction upstream to feeding arterioles. (4) For low perfusion heterogeneity in the steady state, metabolic signaling from the vessel wall or a perivascular tissue sleeve is optimal. (5) For amplification of perfuReceived: February 26, 2014 Accepted after revision: October 4, 2014 Published online: December 18, 2014 Dr. B. Reglin Department of Physiology, Charité Berlin Charitéplatz 1 DE–10117 Berlin (Germany) E-Mail bettina.reglin @ charite.de © 2014 S. Karger AG, Basel 1018–1172/14/0515–0376$39.50/0

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolic control of microvascular networks: oxygen sensing and beyond.

The metabolic regulation of blood flow is central to guaranteeing an adequate supply of blood to the tissues and microvascular network stability. It is assumed that vascular reactions to local oxygenation match blood supply to tissue demand via negative-feedback regulation. Low oxygen (O2) levels evoke vasodilatation, and thus an increase of blood flow and oxygen supply, by increasing (decreasi...

متن کامل

Metabolic Control of Microvascular Networks: Oxygen Sensing and Beyond

The metabolic regulation of blood flow is central to guaranteeing an adequate supply of blood to the tissues and microvascular network stability. It is assumed that vascular reactions to local oxygenation match blood supply to tissue demand via negative-feedback regulation. Low oxygen (O 2 ) levels evoke vasodilatation, and thus an increase of blood flow and oxygen supply, by increasing (decrea...

متن کامل

Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation

Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF) through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1) interpretation of functional Magnetic Resonance Imaging (fMRI) signals, and (2) investigation of neurological di...

متن کامل

Two Dimensional Mathematical Model of Tumor Angiogenesis: Coupling of Avascular Growth and Vascularization

Introduction As a tumor grows, the demand for oxygen and nutrients increases and it grows further if acquires the ability to induce angiogenesis. In this study, we aimed to present a two-dimensional continuous mathematical model for avascular tumor growth, coupled with a discrete model of angiogenesis. Materials and Methods In the avascular growth model, tumor is considered as a single mass, wh...

متن کامل

Structural adaptation of microvascular networks: functional roles of adaptive responses.

Terminal vascular beds continually adapt to changing demands. A theoretical model is used to simulate structural diameter changes in response to hemodynamic and metabolic stimuli in microvascular networks. Increased wall shear stress and decreased intravascular pressure are assumed to stimulate diameter increase. Intravascular partial pressure of oxygen (PO(2)) is estimated for each segment. De...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014